
BACKTALK

June 2006 www.stsc.hill.af.mil 31

I’m sitting here writing this BackTalk while on business in
Baltimore. I flew into the Baltimore Washington International

Airport (BWI). I remember a few years ago when BWI advertised
itself as a great alternative to both Reagan National (in down-
town D.C., always crowded) and Dulles (which is about 25 miles
out of D.C.). BWI was convenient to both Baltimore and D.C.,
and small enough that rental cars were located within a five
minute walk of the terminal. Things have changed! BWI is now
under construction, and I had to walk from one end of the air-
port to the other to get to baggage claim. Then, I had to walk all
the way to the other end of the airport to catch the “rental car
bus.” Car rentals are now about five miles away, so you have no
option other than the inconveniently located rental car bus – and
the buses were extremely crowded. Things change. What used to
be a good thing becomes inconvenient and appears to be poorly
designed.

Which brings us to “Why Software Fails.” This has been a
hard column to write – I was tempted to take the easy way out,
and simply list and add the pictures of a few former co-workers
and acquaintances who, in my opinion, have contributed to fail-
ing software over the years.1 But instead, I have come up with a
good start at a list that explains why software fails.

Software fails … one day at a time. Insidious little events
occur. Small errors creep in. You have the road not taken syn-
drome. You realize that you could do better, but you don’t have
time to go back and start all over again. It’s not always the big
errors that cause failure, it’s the little errors that accumulate.

Software fails … with the best of intentions. Developers,
with the exception of a few TRULY unspectacular folks I have
known, don’t really set out to do a poor job.2 We try and make the
right choices, but we don’t have the ability to predict the future.
If things had turned out a little differently, we would have had a
spectacular success. Instead, decisions turned out to be sub-opti-
mal. If we only had the time to do it over.

Software fails … because we have no other choice.
Sometimes politics, budgets, and schedules force us to make deci-
sions we don’t like. In a perfect world, we would have the time
and budget to make perfect software. The world isn’t perfect, and
we are often forced into less than perfect solutions. We know bet-
ter, we just can’t do better. Real-world requirements change and
we have to make the software react also, or the software becomes
obsolete. I am relatively sure that the designers of the new BWI
rental car terminal wish they were still located within a few hun-
dred feet of the airport. However, the reality is that increased air
traffic and congestion made this option infeasible. Sad to see it
go, but it beats NOT having a rental car, doesn’t it?

Software fails ... because we are overcome by events.
Sometimes, we have to make choices before we have time to
research all of the options. Schedules are tight and it’s more
important to make a workable decision now rather than making
a better decision later. We don’t like it, but it’s just what we have
to do.

Software fails … because we can’t think of everything. Ever
left the house for the grocery store with a memorized grocery list?
You started out for milk and eggs. You added carrots and sliced
cheese. Your spouse reminded you that you need toothpaste and
shampoo. Only a few items. Yet, by the time you get to the gro-

cery store, you’re reduced to calling home, because all you can
remember is milk, eggs, and something else. How many things can
you juggle in your memory at one time? For most people, I sus-
pect this number peaks out around nine or 10. Unfortunately,
large-scale software has millions of lines of code, and literally
tens of thousands of function points. How can we comprehend
such large scale? We use architectural design to decompose the
problem, and we use high-level languages, modularity, and object-
oriented techniques to further break the problem down.
However, with software of such large size, things just slip
through the cracks. Requirements are missed or not implement-
ed. Obvious errors are usually obvious only in hindsight – after
the failure.

Software fails … because developers are only human. Have
you ever spent hours (or even days) looking for an error, and had
somebody wander by, glance over your code, and immediately see
the problem? When you develop code, you tend to internalize
your own errors, and then your brain fails to see them. An out-
side observer, however, can often see what you keep overlooking.
Almost all good developers know that you need somebody else
to review your work. This applies to all phases of software devel-
opment: requirements, design, coding, and maintenance. One of
my favorite quotes is, “When quality is vital, independent checks
are necessary, not because people are untrustworthy but because
they are human3.” Even if you are one of the best software devel-
opers around,4 you make mistakes. So does everybody else.

Software fails … because you failed to consult the Software
Technology Support Center (STSC) for help when developing
your software. Or, if not the STSC, you should learn from some-
body! You want to emulate the best practices of others while at
the same time keep from making the same mistakes that others
have made. Learn from the mistakes of others and also learn
from the success of others. Find out what other similar develop-
ment efforts did right and wrong. Read journals. Talk to fellow
developers on other projects. But then – you are already reading
CrossTalk, aren’t you?

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

dcook@aegistg.com

P.S. I am not claiming my list is complete or even valid (after all,
I didn’t review this with anybody else!). Feel free to e-mail me
your additions or comments, and maybe you’ll see them in a
future BackTalk column.

Notes
1. Worried that you’ll find your name here, aren’t you?
2. STILL worried that you’ll find your name here, aren’t you?
3. Humphrey, Watts S. Managing the Software Process.

Addison-Wesley, 1989.
4. Well, you certainly aren’t expecting to find any name other

than mine, are you?

When Failure IS an Option …

